New technology is being used throughout the power industry to improve plant efficiency, predict trouble with degrading equipment, forecast weather trends, and train workers. A recent conference hosted by POWER brought together a number of savvy users and providers to share their experiences and learn about new offerings.

A joke that always seems to get laughs when the power plant of the future is contemplated is that only one human and one dog will be needed to operate it. The dog’s job will be to bite the human if he or she tries to touch anything; the human’s job will be to feed the dog.

The point of the joke, of course, is that the power plant of the future may not need humans at all; it may be run completely by computers and controlled using artificial intelligence. Although that sounds like science fiction, so did self-driving cars a few years ago. Now, it’s not only companies like Tesla and Google that are developing autonomous vehicles; even Ford expects to have commercial models available by 2021.

Leaders Connect

POWER hosted the first-ever Connected Plant Conference in Dallas, Texas, February 15–16, 2017. The conference—designed to give attendees the tools needed to move toward a more connected power plant—was sponsored by industry heavyweights GE, Siemens, and the Electric Power Research Institute (EPRI), among others. Presentations included case studies on connected technologies being utilized by utilities such as Exelon, Duke Energy, Salt River Project, and more. (Stay tuned to POWER for soon-to-be-released details about next year’s event.)

During the conference, Sham Chotai, chief technology officer (CTO) of GE Power Digital Solutions, noted that technology offerings have evolved significantly in recent years (Figure 1). GE introduced its digital wind farm in the spring of 2015. The solution has improved the annual energy production of some wind farms by 3% to 4% through digital modeling and improved data analytics. In the fall of 2015, GE rolled out its digital power plant for gas-fired facilities, increasing the efficiency of many of those units. Last summer, it introduced the digital power plant for steam units, which has improved the efficiency of some coal-fired plants by 5%.

1. The digital revolution. New technology, such as GE’s Predix system, has allowed many power plants to optimize performance. Courtesy: GE Power

Chotai noted that Exelon Generation has embraced GE’s Predix technology in a big way. For example, Exelon is utilizing the product’s energy forecasting tools to more accurately predict wind speeds, which affects wind generation forecasts. Dispatchers use the information to adjust models and factor in expected changes. One Exelon employee said prior to implementing the Predix solution, the company left potential energy generation on the table that it is now able to profit from.

“[Exelon is] just an incredible, incredible partner for us,” Chotai said. “They’re early adopters. We think we’re early in this journey. We spent about the last 18 months really piloting a lot of technologies . . . They bought everything that we had.”

Another example of an early adopter is Duke Energy (the company’s Renewable Control Center is shown in the opening photo). Michael Reid, general manager of technical programs for Duke Energy’s Fossil Hydro Group, gave a presentation showing how Duke Energy has applied technology—building off the online-monitoring concept—to detect equipment failures earlier than was previously possible. He noted that the earlier problems are detected, the more time there is to plan, prioritize, schedule, and execute repairs.